一,更定交均及黃白大距以合差分。西人奈端、噶西尼以來,測得日在兩交時,交角最大為五度一十七分二十秒;日距交九十度時,交角最小為四度五十九分三十五秒。朔望而後,交角又有加分。因日距交與月距日之漸遠,以漸而大,至日距交九十度、月距日亦九十度時,加二分四十三秒。交均之最大者,為一度二十九分四十二秒。乃以最大、最小兩交角相加折半,為繞黃極本輪;相減折半,為負白極均輪。分均輪全徑為五,取其一,內去朔望後加分,為最大加分小輪全徑,設於白道,餘為交均小輪全徑。與均輪全徑相減,餘為負小輪全徑,與均輪同心,均輪負而行,不自行。均輪心行於本輪周,左旋,為正交平行。交均小輪心在負小輪周,起最遠點,右旋,行日距正交之倍度。白極在交均小輪周,起最遠點,左旋,行度又倍之。而白道上之加分小輪,其周最近。黃道之點,與朔望之白道相切,其全徑按日距正交倍度為大小,常與最大加分小輪內所當之正矢等。又按本時全徑內取月距日倍度所當之正矢為所張之度,驗諸實測,無不菂合。本法用之。如圖甲為黃極,乙為本輪,丙為均輪,丁為負小輪,戊己皆為交均小輪,庚辛皆為白極,壬為黃道,醜、癸皆為朔望時白道,寅、子皆為兩弦時白道,卯、辰皆為白道上加分小輪。
一,更定地半徑差以合高均。求得兩心差最大時,最高距地心一0六六七八二0,為六十三倍地半徑又百分之七十七;最卑距地心九三三二一八0,為五十五倍地半徑又百分之七十九。兩心差最小時,最高距地心一0四三三一九0,為六十二倍地半徑又百分之三十七;最卑距地心九五六六八一0,為五十七倍地半徑又百分之一十九;中距距地心一千萬,為五十九倍地半徑又百分之七十八。又用平三角形,求得太陰自高至卑逐度距地心線及地平上最大差。其實高逐度之差,皆以半徑與正弦為比例。
一,更定三種平行及平行所在。太陰每日平行,比甲子元法多千萬分秒之二萬二千三百一十六,最高每日平行,比甲子元法少百萬分秒之七千二百五十一,正交每日平行,比甲子元法少十萬分秒之一百三十七。雍正癸卯天正冬至,次日子正,太陰平行所在,比甲子元法多二分一十四秒五十七微,最高平行所在,比甲子元法少三十六分三十七秒一十微,正交平行所在,比甲子元法多五分六秒三十三微。
交食改法之原:
一,用兩時日躔、月離黃道度求實朔、望。先推平朔、望以求其入交之月,次推本日、次日兩子正之日躔、月離黃道經度以求其實朔、望之時,又推本時次時兩日躔、月離以比例其時刻。與甲子元法止用兩日及用黃白同經者不同。一,用兩經斜距求日、月食甚時刻及兩心實相距。以黃白二道原非平行,而日、月兩經常相斜距。若以太陽為不動,則太陰如由斜距線行,故求兩心相距最近之線,不與白道成正角,而與斜距線成正角。其距弧變時,亦不以月距日實行度為比例,而以斜距度為比例。如圖甲乙為黃道,戊乙為白道,甲戊為實朔、望距緯,甲癸為太陽一小時實行,戊醜為太陰一小時實行。設太陽不動而合癸與甲,則太陰不在醜而在寅。戊寅為一小時兩經斜距線,甲卯與戊寅成正角,即為兩心相距最近之線,戊卯為食甚距弧,皆借弧線為直線,用平三角形求之。初虧、復圓,則以並徑為弦作勾股。一,更定日、月實徑與地徑之比例。西人默爵製造鏡儀,測得日視徑最高為三十一分四十秒,中距為三十二分一十二秒,最卑為三十二分四十五秒;月視徑最高為二十九分二十三秒,中距為三十一分二十一秒,最卑為三十三分三十六秒。用此數推算日實徑為地徑之九十六倍又十分之六,月實徑為地徑百分之二十七,小餘二六強,太陽光分一十五秒。本法用之。
一,更定求影半徑法及影差。以日、月兩地半徑差相加,內減去日半徑,餘即為實影半徑。又月食時日在地下,蒙氣轉蔽日光,地影視徑大於實徑約為太陰地半徑差六十九分之一,是為影差。如圖甲丁辛三角形,丁辛二內角與壬甲辛一外角等,丁角即太陽地半徑差,辛角即太陰地半徑差,甲丁線略與甲丙日天半徑等,甲辛線略與甲己月天半徑等,其角皆與地半徑甲乙相當故。壬甲己對角丙甲丁即日半徑。故以丁角、辛角相加,即得壬甲辛角,內減壬甲己角,餘己甲辛角,即實影半徑。
圖形尚無資料
一,更定求日食食甚真時及兩心視相距。借弧線為直線,用平三角形,以食甚用時兩心實相距為一邊,用時高下差為一邊,用時白經高弧交角為所夾之角,求得對角之邊,為兩心視相距,並求得對兩心實相距角。復設一